Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. oral res. (Online) ; 32: e15, 2018. tab, graf
Article in English | LILACS | ID: biblio-889485

ABSTRACT

Abstract This study evaluated the shear bond strength (SBS) of self-adhesive resin cements (SARCs) to dentin and their physical-chemical properties. Five commercial SARCs were evaluated [SmartCem®2 - DENTSPLY (SC2); BisCem® - Bisco (BC); SeT PP® − SDI (SeT); Relyx U100® - 3M ESPE (U100) and YCEM® SA - Yller (YCEM)]. The SARCs were evaluated for SBS to dentin (n = 10) after 24 h, 6 months, and 12 months. The dentin demineralization caused by acidic monomers was observed by SEM, and pH-neutralization of eluate was observed for 24 h. Degree of conversion (DC), rate of polymerization (Rp), flexural strength (FS), and elastic modulus (E) were evaluated. Immediate SBS of SC2, SET, U100, and YCEM were statistically higher than that of BC (p < 0.001). After 12 months, all SARCs showed reduced SBS values and U100 showed values similar to those of SET and YCEM, and higher than those of BC and SC2 (p = 0.001). Demineralization pattern of SARCs was similar. At 24h, all SARCs showed no differences in the pH-value, except BC and U100 (p < 0.001). YCEM showed the highest Rp. U100, YCEM, and SC2 showed statistically higher FS (p<0.001) and E (p < 0.001) when compared with SET and BC. U100 and YCEM showed the best long-term bonding irrespective of the storage period. A significant reduction in SBS was found for all groups after 12 months. SBS was not shown to be correlated with physical-chemical properties, and appeared to be material-dependent. The polymerization profile suggested that an increased time of light activation, longer than that recommended by manufacturers, would be necessary to optimize DC of SARCs.


Subject(s)
Composite Resins/chemistry , Resin Cements/chemistry , Dentin/drug effects , Light-Curing of Dental Adhesives/methods , Reference Values , Surface Properties/drug effects , Time Factors , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Pliability , Shear Strength , Dentin/chemistry , Phase Transition/drug effects , Elastic Modulus , Polymerization
2.
Braz. oral res. (Online) ; 32: e104, 2018. tab, graf
Article in English | LILACS | ID: biblio-974458

ABSTRACT

Abstract This study evaluated the three-year lifespan of the bond to dentin of experimental self-etch adhesives containing benzodioxole derivatives - 1,3-benzodioxole (BDO) and piperonyl alcohol (PA) - as co-initiator alternative to amines. Adhesive resins were formulated using Bis-GMA, TEGDMA, HEMA, camphorquinone and different co-initiators: BDO, PA or ethyl 4-dimethylamino benzoate (EDAB - amine). An experimental self-etch primer was used to complete the two-step, self-etch adhesive system. Clearfil SE Bond (CSE) was used as commercial reference. Bond strength to human dentin was assessed by microtensile bond strength (µTBS) test, and failure mode was classified. Morphology of the dentin bonding interface was assessed via scanning electron microscopy (SEM). Irrespective of the dental adhesives evaluated, µTBS was higher after 24 hours compared with that after 1.5 and 3 years (p ≤ 0.001). However, adhesives with BDO and PA as co-initiators showed significantly higher bond strength than the bonding resin with EDAB (p ≤ 0.002), independent of the time evaluated. The commercial adhesive CSE showed similar bond strength compared with the other groups (p ≥ 0.05). Mixed failures were mainly observed after 24 hours, while adhesive failures were more frequently observed after 1.5 and 3 years. No notable differences in homogeneity and continuity along the bonded interfaces were detected among the materials in the SEM analysis. In conclusion, benzodioxole derivatives are feasible alternative co-initiators to tertiary amine in camphorquinone-based self-etching dental adhesive formulations.


Subject(s)
Humans , Benzyl Alcohols/chemistry , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry , Dentin/drug effects , Dioxoles/chemistry , Benzodioxoles/chemistry , para-Aminobenzoates/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Surface Properties , Tensile Strength , Time Factors , Materials Testing , Camphor/analogs & derivatives , Camphor/chemistry , Microscopy, Electron, Scanning , Reproducibility of Results , Dental Bonding/methods , Bisphenol A-Glycidyl Methacrylate/chemistry , Dentin/chemistry , Methacrylates/chemistry
3.
Braz. j. oral sci ; 17: e181357, 2018. ilus
Article in English | LILACS, BBO | ID: biblio-970423

ABSTRACT

Aim: The aim of this study was to evaluate a new method for measuring the retention values of different denture adhesives. Methods: The adhesive strength values of three different commercial denture adhesives (Corega powder, Corega adhesive tape and Ultra Corega cream) were evaluated using three different moisturizing agents (distilled water, artificial saliva and natural saliva). The adhesive test was performed on a universal testing machine, after applying the adhesive products to acrylic resin specimens, under two different test conditions (wetting or dipping). Tensile bond strength values in MPa were obtained for each denture adhesive presentation and test condition. Viscosity of the denture adhesives mixed with the different moisturizing agents was determined using a rotary rheometer. Maximum viscosity values were analyzed using the one-way ANOVA test. Tensile bond strength data was analyzed using Kruskal-Wallis and the Tukey's test. Pooled data of each denture adhesive presentations for all test conditions was also carried out. Correlation between viscosity and pooled tensile strength values was analyzed through linear regression analysis. A significance level of α=0.05 was set for all analyses. Results: Results showed that statistically higher adhesion strength was obtained with tape and cream adhesives when using natural saliva as moisturizing agents (p<0.05). The adhesive strength values obtained with the dipping method were similar to those obtained with the conventional wetting method. The denture retention strength was influenced by both the denture adhesive type and moisturizing agent used. Conclusion: The dipping method showed to be a reliable test capable to simulate the oral conditions and should be better explored in further studies


Subject(s)
Tensile Strength , Denture Retention , Denture Bases
SELECTION OF CITATIONS
SEARCH DETAIL